The optimal bound on the 3-independence number obtainable from a polynomial-type method

نویسندگان

چکیده

A $k$-independent set in a connected graph is of vertices such that any two the are at distance greater than $k$ graph. The $k$-independence number graph, denoted $\alpha_k$, size largest Recent results have made use polynomials depend on spectrum to bound number. They optimized for cases $k=1,2$. There give good (and sometimes) optimal general $k$, including case $k=3$. In this paper, we provide best possible can be obtained by choosing polynomial $k=3$ and apply well-known families graphs Hamming

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effect of traffic density on the accident externality from driving the case study of tehran

در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...

15 صفحه اول

A lower bound on the independence number of a graph

For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.

متن کامل

A new lower bound on the independence number of graphs

We propose a new lower bound on the independence number of a graph. We show that our bound compares favorably to recent ones (e.g. [12]). We obtain our bound by using the Bhatia-Davis inequality applied with analytical results (minimum, maximum, expectation and variance) of an algorithm for the vertex cover problem.

متن کامل

A lower bound on the independence number of arbitrary hypergraphs

We present a lower bound on the independence number of arbitrary hypergraphs in terms of the degree vectors. The degree vector of a vertex v is given by d(v) = (d 1 (v); d 2 (v); : : :) where d m (v) is the number of edges of size m containing v. We deene a function f with the property that any hypergraph H = (V; E) satisses (H) P v2V f(d(v)). This lower bound is sharp when H is a matching, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2023

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2023.113471